Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1276979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022561

RESUMO

Pregnancy success is dependent on the establishment of maternal tolerance during the preimplantation period. The immunosuppressive function of regulatory T cells is critical to limit inflammation arising from implantation of the semi-allogeneic blastocyst. Insufficient maternal immune adaptations to pregnancy have been frequently associated with cases of female infertility and recurrent implantation failure. The role of Nodal, a secreted morphogen of the TGFß superfamily, was recently implicated during murine pregnancy as its conditional deletion (NodalΔ/Δ) in the female reproductive tract resulted in severe subfertility. Here, it was determined that despite normal preimplantation processes and healthy, viable embryos, NodalΔ/Δ females had a 50% implantation failure rate compared to NodalloxP/loxP controls. Prior to implantation, the expression of inflammatory cytokines MCP-1, G-CSF, IFN-γ and IL-10 was dysregulated in the NodalΔ/Δ uterus. Further analysis of the preimplantation leukocyte populations in NodalΔ/Δ uteri showed an overabundance of infiltrating, pro-inflammatory CD11bhigh Ly6C+ macrophages coupled with the absence of CD4+ FOXP3+ regulatory T cells. Therefore, it is proposed that uterine Nodal expression during the preimplantation period has a novel role in the establishment of maternal immunotolerance, and its dysregulation should be considered as a potential contributor to cases of female infertility and recurrent implantation failure.


Assuntos
Infertilidade Feminina , Proteína Nodal , Linfócitos T Reguladores , Animais , Feminino , Camundongos , Gravidez , Implantação do Embrião , Fatores de Transcrição Forkhead , Infertilidade Feminina/genética , Útero , Proteína Nodal/genética
2.
Placenta ; 107: 13-23, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33730615

RESUMO

INTRODUCTION: The growth and survival of the mammalian fetus is highly dependent on the placenta. Several research groups have demonstrated the involvement of different transforming growth factor-beta (TGFß) superfamily members and their related receptors in placentation. Cripto is a member of the epidermal growth factor-Cripto1/FRL1/Cryptic protein family and plays a critical role in embryonic development, stem cell maintenance and tumor progression through TGFß-dependent and independent pathways. Several studies have suggested that Cripto may also have a role in female reproduction and pregnancy maintenance, but its specific role remains elusive. METHODS: We used a conditional knockout mouse model in which Cripto is deleted from the uterus using a loxP-Cre system. Cripto cKO females were mated with wildtype males and dissections were performed at different timepoints during pregnancy for assessment of the number and size of the implantation sites, resorption sites, fetal weight and placental development. Histology, IF staining and quantitative PCR were employed to analyze the placentation process. RESULTS: We found that loss of maternal Cripto results in defective placentation, decreased vascularization within the placental labyrinth and leads to intrauterine growth restriction and fetal death. We further demonstrated that components of the VEGF and Notch signaling pathways are downregulated in Cripto cKO decidua and placenta potentially contributing to defects in the development of the vasculature at maternal-fetal interface. DISCUSSION: These findings demonstrate that maternal Cripto is involved in the maternal-fetal communications required for proper development of the placenta and placental vasculature.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Placenta/irrigação sanguínea , Placentação/fisiologia , Animais , Fator de Crescimento Epidérmico/genética , Feminino , Fertilidade/fisiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo , Útero/metabolismo
3.
Biol Reprod ; 104(5): 1045-1057, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590845

RESUMO

Cripto encodes for a cell surface receptor whose role in embryonic development and stem cell maintenance has been studied. Cripto mRNA and protein have been detected in the human uterus at all stages of the menstrual cycle. To date, there is not much known about Cripto's role in female reproduction. As Cripto null Knockout (KO) is embryonic lethal, we created a conditional KO (cKO) mouse model in which Cripto is deleted only in the reproductive tissues using a Cre-loxP system. Pregnancy rate and number of pups per litter were evaluated as general fertility indices. We observed a significant decrease in pregnancy rate and litter size with loss of uterine Cripto indicating that Cripto cKO females are subfertile. We showed that although the preimplantation period is normal in Cripto cKO females, 20% of cKO females fail to establish pregnancy and an additional 20% of females undergo full litter loss after implantation between day 5.5 postcoitum (d5.5pc) and d8.5pc. We showed that subfertility caused by loss of uterine Cripto is due to defects in uterine decidualization, remodeling, and luminal closure and is accompanied by significant downregulation of Bmp2, Wnt4 and several components of Notch signaling pathway which all are known to be important factors in uterine remodeling and decidualization. Our study demonstrates that Cripto is expressed in the uterus during critical stages of early pregnancy and its deletion results in subfertility due to implantation failure, impaired peri-implantation uterine remodeling and impaired uterine decidualization.


Assuntos
Decídua/metabolismo , Implantação do Embrião/genética , Fator de Crescimento Epidérmico/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Útero/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Feminino , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo
4.
Angiogenesis ; 23(3): 443-458, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385775

RESUMO

During the initiation of pregnancy, the vasculature of the implantation site expands rapidly, yet little is known about this process or its role in fertility. Here, we report that endothelial-specific deletion of a disintegrin and metalloprotease 10 (ADAM10), an essential regulator of Notch signaling, results in severe subfertility in mice. We found that implantation sites develop until 5.5 days post conception (dpc) but are resorbed by 6.5 dpc in A10ΔEC mice. Analysis of the mutant implantation sites showed impaired decidualization and abnormal vascular patterning compared to controls. Moreover, RNA-seq analysis revealed changes in endothelial cell marker expression consistent with defective ADAM10/Notch signaling in samples from A10ΔEC mice, suggesting that this signaling pathways is essential for the physiological function of endometrial endothelial cells during early pregnancy. Our findings raise the possibility that impaired endothelial cell function could be a cause for repeated pregnancy loss (RPL) and infertility in humans.


Assuntos
Proteína ADAM10/deficiência , Secretases da Proteína Precursora do Amiloide/deficiência , Decídua/metabolismo , Fertilidade , Deleção de Genes , Proteínas de Membrana/deficiência , Receptores Notch/metabolismo , Transdução de Sinais , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptores Notch/genética
5.
Vet Res Forum ; 4(1): 37-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25593684

RESUMO

The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be increased in vitro, at first. Follicle stimulating hormone (FSH) has been suggested to play a determinant role in the survival of germ cells in addition to increasing spermatogonial proliferation. In this study, the in vitro effects of FSH on spermatogonial cell colony formation were investigated. Sertoli and spermatogonial cells were isolated from 3-5 months old calves. The identity of the Sertoli cells and spermatogonial stem cells were confirmed through immunocytochemistry and colony morphology, respectively. Co-cultured Sertoli and spermatogonial cells were treated with FSH in different dose of 10, 20 and 40 IU mL(-1) FSH, before colony assay. Results indicated that, FSH increased in vitro colonization of spermatogonial cells in comparison with control group. In conclusion, using FSH provided proper bovine spermatogonial stem cell culture medium for in vitro study of these cells.

6.
J Biol Chem ; 287(9): 6551-61, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22174419

RESUMO

Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast two-hybrid screening, we found that the Pkd2L1 N terminus interacts with the receptor for activated C kinase 1 (RACK1), a scaffolding/anchoring protein implicated in various cellular functions. This interaction requires the last two Trp-Asp (WD) motifs of RACK1 and fragment Ala(19)-Pro(45) of Pkd2L1. The interaction was confirmed by GST pulldown, blot overlay, and co-immunoprecipitation assays. By (45)Ca tracer uptake and two-microelectrode voltage clamp electrophysiology, we found that in Xenopus oocytes with RACK1 overexpression Pkd2L1 channel activity is abolished or substantially reduced. Combining with oocyte surface biotinylation experiments, we demonstrated that RACK1 inhibits the function of Pkd2L1 channel on the plasma membrane in addition to reducing its total and plasma membrane expression. Overexpressing Pkd2L1 N- or C-terminal fragments as potential blocking peptides for the Pkd2L1-RACK1 interaction, we found that Pkd2L1 N-terminal fragment Met(1)-Pro(45), but not Ile(40)-Ile(97) or C-terminal fragments, abolishes the inhibition of Pkd2L1 channel by overexpressed and oocyte-native RACK1 likely through disrupting the Pkd2L1-RACK1 association. Taken together, our study demonstrated that RACK1 inhibits Pkd2L1 channel function through binding to domain Met(1)-Pro(45) of Pkd2L1. Thus, Pkd2L1 is a novel target channel whose function is regulated by the versatile scaffolding protein RACK1.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/fisiologia , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/fisiologia , Animais , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Mutagênese/fisiologia , Proteínas de Neoplasias/genética , Oócitos/fisiologia , Técnicas de Patch-Clamp , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/farmacologia , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética , Técnicas do Sistema de Duplo-Híbrido , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...